Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Am Med Inform Assoc ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2325431

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has demonstrated the value of real-world data for public health research. International federated analyses are crucial for informing policy makers. Common data models (CDM) are critical for enabling these studies to be performed efficiently. Our objective was to convert the UK Biobank, a study of 500,000 participants with rich genetic and phenotypic data to the Observational Medical Outcomes Partnership (OMOP) CDM. MATERIALS AND METHODS: We converted UK Biobank data to OMOP CDM v. 5.3. We transformedparticipant research data on diseases collected at recruitment and electronic health records (EHR) from primary care, hospitalizations, cancer registrations, and mortality from providers in England, Scotland, and Wales. We performed syntactic and semantic validations and compared comorbidities and risk factors between source and transformed data. RESULTS: We identified 502,505 participants (3,086 with COVID-19) and transformed 690 fields (1,373,239,555 rows) to the OMOP CDM using eight different controlled clinical terminologies and bespoke mappings. Specifically, we transformed self-reported non-cancer illnesses 946,053 (83.91% of all source entries), cancers 37,802 (70.81%), medications 1,218,935 (88.25%), and prescriptions 864,788 (86.96%). In EHR, we transformed 1,3028,182 (99.95%) hospital diagnoses, 6,465,399 (89.2%) procedures, 337,896,333 primary care diagnoses (CTV3, SNOMED-CT), 139,966,587 (98.74%) prescriptions (dm+d) and 77,127 (99.95%) deaths (ICD-10). We observed good concordance across demographic, risk factor, and comorbidity factors between source and transformed data. DISCUSSION AND CONCLUSION: Our study demonstrated that the OMOP CDM can be successfully leveraged to harmonize complex large-scale biobanked studies combining rich multimodal phenotypic data. Our study uncovered several challenges when transforming data from questionnaires to the OMOP CDM which require further research. The transformed UK Biobank resource is a valuable tool that can enable federated research, like COVID-19 studies.

2.
EClinicalMedicine ; 58: 101932, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2305366

ABSTRACT

Background: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. Methods: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. Findings: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. Interpretation: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. Funding: None.

3.
J R Soc Med ; : 1410768221131897, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2233364

ABSTRACT

OBJECTIVES: To use national, pre- and post-pandemic electronic health records (EHR) to develop and validate a scenario-based model incorporating baseline mortality risk, infection rate (IR) and relative risk (RR) of death for prediction of excess deaths. DESIGN: An EHR-based, retrospective cohort study. SETTING: Linked EHR in Clinical Practice Research Datalink (CPRD); and linked EHR and COVID-19 data in England provided in NHS Digital Trusted Research Environment (TRE). PARTICIPANTS: In the development (CPRD) and validation (TRE) cohorts, we included 3.8 million and 35.1 million individuals aged ≥30 years, respectively. MAIN OUTCOME MEASURES: One-year all-cause excess deaths related to COVID-19 from March 2020 to March 2021. RESULTS: From 1 March 2020 to 1 March 2021, there were 127,020 observed excess deaths. Observed RR was 4.34% (95% CI, 4.31-4.38) and IR was 6.27% (95% CI, 6.26-6.28). In the validation cohort, predicted one-year excess deaths were 100,338 compared with the observed 127,020 deaths with a ratio of predicted to observed excess deaths of 0.79. CONCLUSIONS: We show that a simple, parsimonious model incorporating baseline mortality risk, one-year IR and RR of the pandemic can be used for scenario-based prediction of excess deaths in the early stages of a pandemic. Our analyses show that EHR could inform pandemic planning and surveillance, despite limited use in emergency preparedness to date. Although infection dynamics are important in the prediction of mortality, future models should take greater account of underlying conditions.

4.
Nat Med ; 29(1): 219-225, 2023 01.
Article in English | MEDLINE | ID: covidwho-2185962

ABSTRACT

How the Coronavirus Disease 2019 (COVID-19) pandemic has affected prevention and management of cardiovascular disease (CVD) is not fully understood. In this study, we used medication data as a proxy for CVD management using routinely collected, de-identified, individual-level data comprising 1.32 billion records of community-dispensed CVD medications from England, Scotland and Wales between April 2018 and July 2021. Here we describe monthly counts of prevalent and incident medications dispensed, as well as percentage changes compared to the previous year, for several CVD-related indications, focusing on hypertension, hypercholesterolemia and diabetes. We observed a decline in the dispensing of antihypertensive medications between March 2020 and July 2021, with 491,306 fewer individuals initiating treatment than expected. This decline was predicted to result in 13,662 additional CVD events, including 2,281 cases of myocardial infarction and 3,474 cases of stroke, should individuals remain untreated over their lifecourse. Incident use of lipid-lowering medications decreased by 16,744 patients per month during the first half of 2021 as compared to 2019. By contrast, incident use of medications to treat type 2 diabetes mellitus, other than insulin, increased by approximately 623 patients per month for the same time period. In light of these results, methods to identify and treat individuals who have missed treatment for CVD risk factors and remain undiagnosed are urgently required to avoid large numbers of excess future CVD events, an indirect impact of the COVID-19 pandemic.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Pandemics/prevention & control , COVID-19/epidemiology , Hypertension/complications , Hypertension/drug therapy , Hypertension/epidemiology , Risk Factors
5.
BMC Med Inform Decis Mak ; 23(1): 8, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2196242

ABSTRACT

BACKGROUND: The CVD-COVID-UK consortium was formed to understand the relationship between COVID-19 and cardiovascular diseases through analyses of harmonised electronic health records (EHRs) across the four UK nations. Beyond COVID-19, data harmonisation and common approaches enable analysis within and across independent Trusted Research Environments. Here we describe the reproducible harmonisation method developed using large-scale EHRs in Wales to accommodate the fast and efficient implementation of cross-nation analysis in England and Wales as part of the CVD-COVID-UK programme. We characterise current challenges and share lessons learnt. METHODS: Serving the scope and scalability of multiple study protocols, we used linked, anonymised individual-level EHR, demographic and administrative data held within the SAIL Databank for the population of Wales. The harmonisation method was implemented as a four-layer reproducible process, starting from raw data in the first layer. Then each of the layers two to four is framed by, but not limited to, the characterised challenges and lessons learnt. We achieved curated data as part of our second layer, followed by extracting phenotyped data in the third layer. We captured any project-specific requirements in the fourth layer. RESULTS: Using the implemented four-layer harmonisation method, we retrieved approximately 100 health-related variables for the 3.2 million individuals in Wales, which are harmonised with corresponding variables for > 56 million individuals in England. We processed 13 data sources into the first layer of our harmonisation method: five of these are updated daily or weekly, and the rest at various frequencies providing sufficient data flow updates for frequent capturing of up-to-date demographic, administrative and clinical information. CONCLUSIONS: We implemented an efficient, transparent, scalable, and reproducible harmonisation method that enables multi-nation collaborative research. With a current focus on COVID-19 and its relationship with cardiovascular outcomes, the harmonised data has supported a wide range of research activities across the UK.


Subject(s)
COVID-19 , Electronic Health Records , Humans , COVID-19/epidemiology , Wales/epidemiology , England
6.
Eur Heart J Qual Care Clin Outcomes ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2118038

ABSTRACT

BACKGROUND: Although morbidity and mortality from COVID-19 have been widely reported, the indirect effects of the pandemic beyond 2020 on other major diseases and health service activity have not been well described. METHODS: Analyses used national administrative electronic hospital records in England, Scotland and Wales for 2016-2021. Admissions and procedures during the pandemic (2020-2021) related to six major cardiovascular conditions (acute coronary syndrome, heart failure, stroke/transient ischaemic attack, peripheral arterial disease, aortic aneurysm, and venous thromboembolism) were compared to the annual average in the pre-pandemic period (2016-2019). Differences were assessed by time period and urgency of care. RESULTS: In 2020, there were 31 064 (-6%) fewer hospital admissions (14 506 [-4%] fewer emergencies, 16 560 [-23%] fewer elective admissions) compared to 2016-2019 for the six major cardiovascular diseases combined. The proportional reduction in admissions was similar in all three countries. Overall, hospital admissions returned to pre-pandemic levels in 2021. Elective admissions remained substantially below expected levels for almost all conditions in all three countries (-10 996 [-15%] fewer admissions). However, these reductions were offset by higher than expected total emergency admissions (+25 878 [+6%] higher admissions), notably for heart failure and stroke in England, and for venous thromboembolism in all three countries. Analyses for procedures showed similar temporal variations to admissions. CONCLUSION: This study highlights increasing emergency cardiovascular admissions during the pandemic, in the context of a substantial and sustained reduction in elective admissions and procedures. This is likely to increase further the demands on cardiovascular services over the coming years.

7.
Circulation ; 146(12): 892-906, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2089002

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a prothrombotic state, but long-term effects of COVID-19 on incidence of vascular diseases are unclear. METHODS: We studied vascular diseases after COVID-19 diagnosis in population-wide anonymized linked English and Welsh electronic health records from January 1 to December 7, 2020. We estimated adjusted hazard ratios comparing the incidence of arterial thromboses and venous thromboembolic events (VTEs) after diagnosis of COVID-19 with the incidence in people without a COVID-19 diagnosis. We conducted subgroup analyses by COVID-19 severity, demographic characteristics, and previous history. RESULTS: Among 48 million adults, 125 985 were hospitalized and 1 319 789 were not hospitalized within 28 days of COVID-19 diagnosis. In England, there were 260 279 first arterial thromboses and 59 421 first VTEs during 41.6 million person-years of follow-up. Adjusted hazard ratios for first arterial thrombosis after COVID-19 diagnosis compared with no COVID-19 diagnosis declined from 21.7 (95% CI, 21.0-22.4) in week 1 after COVID-19 diagnosis to 1.34 (95% CI, 1.21-1.48) during weeks 27 to 49. Adjusted hazard ratios for first VTE after COVID-19 diagnosis declined from 33.2 (95% CI, 31.3-35.2) in week 1 to 1.80 (95% CI, 1.50-2.17) during weeks 27 to 49. Adjusted hazard ratios were higher, for longer after diagnosis, after hospitalized versus nonhospitalized COVID-19, among Black or Asian versus White people, and among people without versus with a previous event. The estimated whole-population increases in risk of arterial thromboses and VTEs 49 weeks after COVID-19 diagnosis were 0.5% and 0.25%, respectively, corresponding to 7200 and 3500 additional events, respectively, after 1.4 million COVID-19 diagnoses. CONCLUSIONS: High relative incidence of vascular events soon after COVID-19 diagnosis declines more rapidly for arterial thromboses than VTEs. However, incidence remains elevated up to 49 weeks after COVID-19 diagnosis. These results support policies to prevent severe COVID-19 by means of COVID-19 vaccines, early review after discharge, risk factor control, and use of secondary preventive agents in high-risk patients.


Subject(s)
COVID-19 , Thrombosis , Vascular Diseases , Venous Thromboembolism , Venous Thrombosis , Adult , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines , Cohort Studies , Humans , SARS-CoV-2 , Thrombosis/complications , Thrombosis/epidemiology , Vascular Diseases/complications , Venous Thromboembolism/etiology , Venous Thrombosis/epidemiology , Wales/epidemiology
8.
Front Psychol ; 13: 940978, 2022.
Article in English | MEDLINE | ID: covidwho-2055056

ABSTRACT

Objective: The presence of two or more chronic diseases results in worse clinical outcomes than expected by a simple combination of diseases. This synergistic effect is expected to be higher when combined with some conditions, depending on the number and severity of diseases. Multimorbidity is a relatively new term, with the first fundamental definitions appearing in 2015. Studies usually define it as the presence of at least two chronic medical illnesses. However, little is known regarding the relationship between mental disorders and other non-psychiatric chronic diseases. This review aims at investigating the association between some mental disorders and non-psychiatric diseases, and their pattern of association. Methods: We performed a systematic approach to selecting papers that studied relationships between chronic conditions that included one mental disorder from 2015 to 2021. These were processed using Covidence, including quality assessment. Results: This resulted in the inclusion of 26 papers in this study. It was found that there are strong associations between depression, psychosis, and multimorbidity, but recent studies that evaluated patterns of association of diseases (usually using clustering methods) had heterogeneous results. Quality assessment of the papers generally revealed low quality among the included studies. Conclusions: There is evidence of an association between depressive disorders, anxiety disorders, and psychosis with multimorbidity. Studies that tried to examine the patterns of association between diseases did not find stable results. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021216101, identifier: CRD42021216101.

10.
Eur Heart J ; 43(37): 3578-3588, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2017894

ABSTRACT

Big data is central to new developments in global clinical science aiming to improve the lives of patients. Technological advances have led to the routine use of structured electronic healthcare records with the potential to address key gaps in clinical evidence. The covid-19 pandemic has demonstrated the potential of big data and related analytics, but also important pitfalls. Verification, validation, and data privacy, as well as the social mandate to undertake research are key challenges. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including patient representatives, clinicians, scientists, regulators, journal editors and industry. We propose the CODE-EHR Minimum Standards Framework as a means to improve the design of studies, enhance transparency and develop a roadmap towards more robust and effective utilisation of healthcare data for research purposes.


Subject(s)
COVID-19 , Electronic Health Records , COVID-19/epidemiology , Delivery of Health Care , Electronics , Humans , Pandemics/prevention & control
11.
Lancet Digit Health ; 4(10): e757-e764, 2022 10.
Article in English | MEDLINE | ID: covidwho-2004683

ABSTRACT

Big data is important to new developments in global clinical science that aim to improve the lives of patients. Technological advances have led to the regular use of structured electronic health-care records with the potential to address key deficits in clinical evidence that could improve patient care. The COVID-19 pandemic has shown this potential in big data and related analytics but has also revealed important limitations. Data verification, data validation, data privacy, and a mandate from the public to conduct research are important challenges to effective use of routine health-care data. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including representation from patients, clinicians, scientists, regulators, journal editors, and industry members. In this Review, we propose the CODE-EHR minimum standards framework to be used by researchers and clinicians to improve the design of studies and enhance transparency of study methods. The CODE-EHR framework aims to develop robust and effective utilisation of health-care data for research purposes.


Subject(s)
COVID-19 , Pandemics , Big Data , Electronic Health Records , Electronics , Humans
12.
Kidney Int ; 102(3): 652-660, 2022 09.
Article in English | MEDLINE | ID: covidwho-1945890

ABSTRACT

Chronic kidney disease (CKD) is associated with increased risk of baseline mortality and severe COVID-19, but analyses across CKD stages, and comorbidities are lacking. In prevalent and incident CKD, we investigated comorbidities, baseline risk, COVID-19 incidence, and predicted versus observed one-year excess death. In a national dataset (NHS Digital Trusted Research Environment [NHSD TRE]) for England encompassing 56 million individuals), we conducted a retrospective cohort study (March 2020 to March 2021) for prevalence of comorbidities by incident and prevalent CKD, SARS-CoV-2 infection and mortality. Baseline mortality risk, incidence and outcome of infection by comorbidities, controlling for age, sex and vaccination were assessed. Observed versus predicted one-year mortality at varying population infection rates and pandemic-related relative risks using our published model in pre-pandemic CKD cohorts (NHSD TRE and Clinical Practice Research Datalink [CPRD]) were compared. Among individuals with CKD (prevalent:1,934,585, incident:144,969), comorbidities were common (73.5% and 71.2% with one or more condition[s] in respective data sets, and 13.2% and 11.2% with three or more conditions, in prevalent and incident CKD), and associated with SARS-CoV-2 infection, particularly dialysis/transplantation (odds ratio 2.08, 95% confidence interval 2.04-2.13) and heart failure (1.73, 1.71-1.76), but not cancer (1.01, 1.01-1.04). One-year all-cause mortality varied by age, sex, multi-morbidity and CKD stage. Compared with 34,265 observed excess deaths, in the NHSD-TRE and CPRD databases respectively, we predicted 28,746 and 24,546 deaths (infection rates 10% and relative risks 3.0), and 23,754 and 20,283 deaths (observed infection rates 6.7% and relative risks 3.7). Thus, in this largest, national-level study, individuals with CKD have a high burden of comorbidities and multi-morbidity, and high risk of pre-pandemic and pandemic mortality. Hence, treatment of comorbidities, non-pharmaceutical measures, and vaccination are priorities for people with CKD and management of long-term conditions is important during and beyond the pandemic.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , COVID-19/epidemiology , COVID-19/therapy , Humans , Pandemics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Retrospective Studies , SARS-CoV-2
13.
Lancet Digit Health ; 4(7): e542-e557, 2022 07.
Article in English | MEDLINE | ID: covidwho-1882680

ABSTRACT

BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19 Testing , Cohort Studies , Electronic Health Records , England/epidemiology , Humans , SARS-CoV-2 , State Medicine
14.
Drug Saf ; 45(6): 685-698, 2022 06.
Article in English | MEDLINE | ID: covidwho-1872804

ABSTRACT

INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Thrombosis , Algorithms , COVID-19 Vaccines/adverse effects , Cohort Studies , Humans , Phenotype , Retrospective Studies , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Thrombosis/chemically induced , Thrombosis/etiology
15.
Heart ; 108(12): 923-931, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1741654

ABSTRACT

OBJECTIVE: To evaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score ≥2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. METHODS: Individuals with AF and CHA2DS2-VASc score ≥2 on 1 January 2020 were identified using electronic health records for 56 million people in England and were followed up until 1 May 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19-related hospitalisation and death were analysed using logistic and Cox regression in individuals with pre-existing AT use versus no AT use, anticoagulants (AC) versus antiplatelets (AP), and direct oral anticoagulants (DOACs) versus warfarin. RESULTS: From 972 971 individuals with AF (age 79 (±9.3), female 46.2%) and CHA2DS2-VASc score ≥2, 88.0% (n=856 336) had pre-existing AT use, 3.8% (n=37 418) had a COVID-19 hospitalisation and 2.2% (n=21 116) died, followed up to 1 May 2021. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92, 95% CI 0.87 to 0.96), but higher odds of hospitalisation (OR=1.20, 95% CI 1.15 to 1.26). AC versus AP was associated with lower odds of death (OR=0.93, 95% CI 0.87 to 0.98) and higher hospitalisation (OR=1.17, 95% CI 1.11 to 1.24). For DOACs versus warfarin, lower odds were observed for hospitalisation (OR=0.86, 95% CI 0.82 to 0.89) but not for death (OR=1.00, 95% CI 0.95 to 1.05). CONCLUSIONS: Pre-existing AT use may be associated with lower odds of COVID-19 death and, while not evidence of causality, provides further incentive to improve AT coverage for eligible individuals with AF.


Subject(s)
Atrial Fibrillation , COVID-19 , Stroke , Aged , Anticoagulants/adverse effects , Atrial Fibrillation/complications , Atrial Fibrillation/drug therapy , Atrial Fibrillation/epidemiology , COVID-19/epidemiology , Female , Fibrinolytic Agents , Humans , Risk Assessment , Risk Factors , Stroke/etiology , Warfarin
16.
PLoS Med ; 19(2): e1003926, 2022 02.
Article in English | MEDLINE | ID: covidwho-1699720

ABSTRACT

BACKGROUND: Thromboses in unusual locations after the Coronavirus Disease 2019 (COVID-19) vaccine ChAdOx1-S have been reported, although their frequency with vaccines of different types is uncertain at a population level. The aim of this study was to estimate the population-level risks of hospitalised thrombocytopenia and major arterial and venous thromboses after COVID-19 vaccination. METHODS AND FINDINGS: In this whole-population cohort study, we analysed linked electronic health records from adults living in England, from 8 December 2020 to 18 March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous, and thrombocytopenic outcomes 1 to 28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and ≥70 years and adjusted for age, age2, sex, ethnicity, and deprivation. We also prespecified adjustment for anticoagulant medication, combined oral contraceptive medication, hormone replacement therapy medication, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection in analyses of venous thrombosis; and diabetes, hypertension, smoking, antiplatelet medication, blood pressure lowering medication, lipid lowering medication, anticoagulant medication, history of stroke, and history of myocardial infarction in analyses of arterial thromboses. We selected further covariates with backward selection. Of 46 million adults, 23 million (51%) were women; 39 million (84%) were <70; and 3.7 million (8.1%) Asian or Asian British, 1.6 million (3.5%) Black or Black British, 36 million (79%) White, 0.7 million (1.5%) mixed ethnicity, and 1.5 million (3.2%) were of another ethnicity. Approximately 21 million (46%) adults had their first vaccination between 8 December 2020 and 18 March 2021. The crude incidence rates (per 100,000 person-years) of all venous events were as follows: prevaccination, 140 [95% confidence interval (CI): 138 to 142]; ≤28 days post-ChAdOx1-S, 294 (281 to 307); >28 days post-ChAdOx1-S, 359 (338 to 382), ≤28 days post-BNT162b2-S, 241 (229 to 253); >28 days post-BNT162b2-S 277 (263 to 291). The crude incidence rates (per 100,000 person-years) of all arterial events were as follows: prevaccination, 546 (95% CI: 541 to 555); ≤28 days post-ChAdOx1-S, 1,211 (1,185 to 1,237); >28 days post-ChAdOx1-S, 1678 (1,630 to 1,726), ≤28 days post-BNT162b2-S, 1,242 (1,214 to 1,269); >28 days post-BNT162b2-S, 1,539 (1,507 to 1,572). Adjusted HRs (aHRs) 1 to 28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and ≥70 years, respectively, were 0.97 (95% CI: 0.90 to 1.05) and 0.58 (0.53 to 0.63) for venous thromboses, and 0.90 (0.86 to 0.95) and 0.76 (0.73 to 0.79) for arterial thromboses. Corresponding aHRs for BNT162b2 were 0.81 (0.74 to 0.88) and 0.57 (0.53 to 0.62) for venous thromboses, and 0.94 (0.90 to 0.99) and 0.72 (0.70 to 0.75) for arterial thromboses. aHRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines. Rates of intracranial venous thrombosis (ICVT) and of thrombocytopenia in adults aged <70 years were higher 1 to 28 days after ChAdOx1-S (aHRs 2.27, 95% CI: 1.33 to 3.88 and 1.71, 1.35 to 2.16, respectively), but not after BNT162b2 (0.59, 0.24 to 1.45 and 1.00, 0.75 to 1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1 to 28 days after ChAdOx1-S were 0.9 to 3 per million, varying by age and sex. The main limitations of the study are as follows: (i) it relies on the accuracy of coded healthcare data to identify exposures, covariates, and outcomes; (ii) the use of primary reason for hospital admission to measure outcome, which improves the positive predictive value but may lead to an underestimation of incidence; and (iii) potential unmeasured confounding. CONCLUSIONS: In this study, we observed increases in rates of ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years that were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults aged <40 years are needed. For people aged ≥70 years, rates of arterial or venous thrombotic events were generally lower after either vaccine compared with unvaccinated, suggesting that either vaccine is suitable in this age group.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , ChAdOx1 nCoV-19/adverse effects , Thrombocytopenia/etiology , Vaccination , Adult , Aged , Cohort Studies , England/epidemiology , Female , Humans , Incidence , Male , Middle Aged , SARS-CoV-2/pathogenicity , Thrombocytopenia/epidemiology , Vaccination/adverse effects
17.
BMC Med ; 20(1): 63, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1699213

ABSTRACT

BACKGROUND: Cardiovascular and renal diseases (CVRD) are major causes of mortality in individuals with type 2 diabetes (T2D). Studies of lifetime risk have neither considered all CVRD together nor the relative contribution of major risk factors to combined disease burden. METHODS: In a population-based cohort study using national electronic health records, we studied 473,399 individuals with T2D in England 2007-2018. Lifetime risk of individual and combined major adverse renal cardiovascular events, MARCE (including CV death and CVRD: heart failure; chronic kidney disease; myocardial infarction; stroke or peripheral artery disease), were estimated, accounting for baseline CVRD status and competing risk of death. We calculated population attributable risk for individual CVRD components. Ideal cardiovascular health was defined by blood pressure, cholesterol, glucose, smoking, physical activity, diet, and body mass index (i.e. modifiable risk factors). RESULTS: In individuals with T2D, lifetime risk of MARCE was 80% in those free from CVRD and was 97%, 93%, 98%, 89% and 91% in individuals with heart failure, chronic kidney disease, myocardial infarction, stroke and peripheral arterial disease, respectively at baseline. Among CVRD-free individuals, lifetime risk of chronic kidney disease was highest (54%), followed by CV death (41%), heart failure (29%), stroke (20%), myocardial infarction (19%) and peripheral arterial disease (9%). In those with HF only, 75% of MARCE after index T2D can be attributed to HF after adjusting for age, gender, and comorbidities. Compared with those with > 1, < 3 and ≥3 modifiable health risk behaviours, achieving ideal cardiovascular health could reduce MARCE by approximately 41.5%, 23.6% and 17.2%, respectively, in the T2D population. CONCLUSIONS: Four out of five individuals with T2D free from CVRD, and nearly all those with history of CVRD, will develop MARCE over their lifetime. Early preventive measures in T2D patients are clinical, public health and policy priorities.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Heart Failure , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Heart Failure/epidemiology , Humans , Renal Insufficiency, Chronic/epidemiology , Risk Factors
18.
Clin Med (Lond) ; 21(6): e620-e628, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1551859

ABSTRACT

Patients and public have sought mortality risk information throughout the pandemic, but their needs may not be served by current risk prediction tools. Our mixed methods study involved: (1) systematic review of published risk tools for prognosis, (2) provision and patient testing of new mortality risk estimates for people with high-risk conditions and (3) iterative patient and public involvement and engagement with qualitative analysis. Only one of 53 (2%) previously published risk tools involved patients or the public, while 11/53 (21%) had publicly accessible portals, but all for use by clinicians and researchers.Among people with a wide range of underlying conditions, there has been sustained interest and engagement in accessible and tailored, pre- and postpandemic mortality information. Informed by patient feedback, we provide such information in 'five clicks' (https://covid19-phenomics.org/OurRiskCoV.html), as context for decision making and discussions with health professionals and family members. Further development requires curation and regular updating of NHS data and wider patient and public engagement.


Subject(s)
COVID-19 , Humans , Pandemics , Prognosis , SARS-CoV-2 , Surveys and Questionnaires
19.
J R Soc Med ; 114(11): 513-524, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488342

ABSTRACT

OBJECTIVE: To offer a quantitative risk-benefit analysis of two doses of SARS-CoV-2 vaccination among adolescents in England. SETTING: England. DESIGN: Following the risk-benefit analysis methodology carried out by the US Centers for Disease Control, we calculated historical rates of hospital admission, Intensive Care Unit admission and death for ascertained SARS-CoV-2 cases in children aged 12-17 in England. We then used these rates alongside a range of estimates for incidence of long COVID, vaccine efficacy and vaccine-induced myocarditis, to estimate hospital and Intensive Care Unit admissions, deaths and cases of long COVID over a period of 16 weeks under assumptions of high and low case incidence. PARTICIPANTS: All 12-17 year olds with a record of confirmed SARS-CoV-2 infection in England between 1 July 2020 and 31 March 2021 using national linked electronic health records, accessed through the British Heart Foundation Data Science Centre. MAIN OUTCOME MEASURES: Hospitalisations, Intensive Care Unit admissions, deaths and cases of long COVID averted by vaccinating all 12-17 year olds in England over a 16-week period under different estimates of future case incidence. RESULTS: At high future case incidence of 1000/100,000 population/week over 16 weeks, vaccination could avert 4430 hospital admissions and 36 deaths over 16 weeks. At the low incidence of 50/100,000/week, vaccination could avert 70 hospital admissions and two deaths over 16 weeks. The benefit of vaccination in terms of hospitalisations in adolescents outweighs risks unless case rates are sustainably very low (below 30/100,000 teenagers/week). Benefit of vaccination exists at any case rate for the outcomes of death and long COVID, since neither have been associated with vaccination to date. CONCLUSIONS: Given the current (as at 15 September 2021) high case rates (680/100,000 population/week in 10-19 year olds) in England, our findings support vaccination of adolescents against SARS-CoV2.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization , Intensive Care Units , Public Health , Severity of Illness Index , Vaccination , Adolescent , Adolescent Health , Age Factors , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Child , Child Health , England , Female , Humans , Incidence , Male , Myocarditis/etiology , Risk , SARS-CoV-2 , Treatment Outcome , Vaccination/adverse effects , Post-Acute COVID-19 Syndrome
20.
BMC Med ; 19(1): 213, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1379790

ABSTRACT

BACKGROUND: The literature paints a complex picture of the association between mortality risk and ICU strain. In this study, we sought to determine if there is an association between mortality risk in intensive care units (ICU) and occupancy of beds compatible with mechanical ventilation, as a proxy for strain. METHODS: A national retrospective observational cohort study of 89 English hospital trusts (i.e. groups of hospitals functioning as single operational units). Seven thousand one hundred thirty-three adults admitted to an ICU in England between 2 April and 1 December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. A Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible), bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, deprivation index, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). RESULTS: One hundred thirty-five thousand six hundred patient days were observed, with a mortality rate of 19.4 per 1000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (> 85% occupancy versus the baseline of 45 to 85%) [OR 1.23 (95% posterior credible interval (PCI): 1.08 to 1.39)]. In contrast, mortality was decreased for admissions during periods of low occupancy (< 45% relative to the baseline) [OR 0.83 (95% PCI 0.75 to 0.94)]. CONCLUSION: Increasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Further research is required to establish if this is a causal relationship or whether it reflects strain on other operational factors such as staff. If causal, the result highlights the importance of strategies to keep ICU occupancy low to mitigate the impact of this type of resource saturation.


Subject(s)
Bed Occupancy/statistics & numerical data , COVID-19/mortality , Cause of Death , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units , Ventilators, Mechanical , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL